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Motivation

Question
How do we compute rational points on (hyperelliptic) curves?

That is, given a (hyperelliptic) curve X defined over Q, how do
we compute X(Q)?

Can we make this algorithmic?
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Example 1: Can we compute X(Q)?
Consider X with affine equation

y2 = 82342800x6 − 470135160x5 + 52485681x4 + 2396040466x3+

567207969x2 − 985905640x + 247747600.

It has at least 642 rational points*, with x-coordinates:
0, -1, 1/3, 4, -4, -3/5, -5/3, 5, 6, 2/7, 7/4, 1/8, -9/5, 7/10, 5/11, 11/5, -5/12, 11/12, 5/12, 13/10, 14/9, -15/2, -3/16, 16/15, 11/18, -19/12, 19/5, -19/11,
-18/19, 20/3, -20/21, 24/7, -7/24, -17/28, 15/32, 5/32, 33/8, -23/33, -35/12, -35/18, 12/35, -37/14, 38/11, 40/17, -17/40, 34/41, 5/41, 41/16, 43/9, -47/4,
-47/54, -9/55, -55/4, 21/55, -11/57, -59/15, 59/9, 61/27, -61/37, 62/21, 63/2, 65/18, -1/67, -60/67, 71/44, 71/3, -73/41, 3/74, -58/81, -41/81, 29/83, 19/83,
36/83, 11/84, 65/84, -86/45, -84/89, 5/89, -91/27, 92/21, 99/37, 100/19, -40/101, -32/101, -104/45, -13/105, 50/111, -113/57, 115/98, -115/44, 116/15,
123/34, 124/63, 125/36, 131/5, -64/133, 135/133, 35/136, -139/88, -145/7, 101/147, 149/12, -149/80, 75/157, -161/102, 97/171, 173/132, -65/173,
-189/83, 190/63, 196/103, -195/196, -193/198, 201/28, 210/101, 227/81, 131/240, -259/3, 265/24, 193/267, 19/270, -279/281, 283/33, -229/298,
-310/309, 174/335, 31/337, 400/129, -198/401, 384/401, 409/20, -422/199, -424/33, 434/43, -415/446, 106/453, 465/316, -25/489, 490/157, 500/317,
-501/317, -404/513, -491/516, 137/581, 597/139, -612/359, 617/335, -620/383, -232/623, 653/129, 663/4, 583/695, 707/353, -772/447, 835/597,
-680/843, 853/48, 860/697, 515/869, -733/921, -1049/33, -263/1059, -1060/439, 1075/21, -1111/30, 329/1123, -193/1231, 1336/1033, 321/1340,
1077/1348, -1355/389, 1400/11, -1432/359, -1505/909, 1541/180, -1340/1639, -1651/731, -1705/1761, -1757/1788, -1456/1893, -235/1983, -1990/2103,
-2125/84, -2343/635, -2355/779, 2631/1393, -2639/2631, 396/2657, 2691/1301, 2707/948, -164/2777, -2831/508, 2988/43, 3124/395, -3137/3145,
-3374/303, 3505/1148, 3589/907, 3131/3655, 3679/384, 535/3698, 3725/1583, 3940/939, 1442/3981, 865/4023, 2601/4124, -2778/4135, 1096/4153,
4365/557, -4552/2061, -197/4620, 4857/1871, 1337/5116, 5245/2133, 1007/5534, 1616/5553, 5965/2646, 6085/1563, 6101/1858, -5266/6303,
-4565/6429, 6535/1377, -6613/6636, 6354/6697, -6908/2715, -3335/7211, 7363/3644, -4271/7399, -2872/8193, 2483/8301, -8671/3096, -6975/8941,
9107/6924, -9343/1951, -9589/3212, 10400/373, -8829/10420, 10511/2205, 1129/10836, 675/11932, 8045/12057, 12945/4627, -13680/8543, 14336/243,
-100/14949, -15175/8919, 1745/15367, 16610/16683, 17287/16983, 2129/18279, -19138/1865, 19710/4649, -18799/20047, -20148/1141, -20873/9580,
21949/6896, 21985/6999, 235/25197, 16070/26739, 22991/28031, -33555/19603, -37091/14317, -2470/39207, 40645/6896, 46055/19518,
-46925/11181, -9455/47584, 55904/8007, 39946/56827, -44323/57516, 15920/59083, 62569/39635, 73132/13509, 82315/67051, -82975/34943,
95393/22735, 14355/98437, 15121/102391, 130190/93793, -141665/55186, 39628/153245, 30145/169333, -140047/169734, 61203/171017,
148451/182305, 86648/195399, -199301/54169, 11795/225434, -84639/266663, 283567/143436, -291415/171792, -314333/195860, 289902/322289,
405523/327188, -342731/523857, 24960/630287, -665281/83977, -688283/82436, 199504/771597, 233305/795263, -799843/183558, -867313/1008993,
1142044/157607, 1399240/322953, -1418023/463891, 1584712/90191, 726821/2137953, 2224780/807321, -2849969/629081, -3198658/3291555,
675911/3302518, -5666740/2779443, 1526015/5872096, 13402625/4101272, 12027943/13799424, -71658936/86391295, 148596731/35675865,
58018579/158830656, 208346440/37486601, -1455780835/761431834, -3898675687/2462651894

Is this list complete?
*Computed by Michael Stoll in 2008.
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Example 2: Can we compute X(Q)?
Consider X with affine equation

y2 = x(x − 1)(x − 2)(x − 5)(x − 6).

The Chabauty-Coleman bound tells us that

|X(Q)| 6 10.

We find the points

(0, 0), (1, 0), (2, 0), (5, 0), (6, 0),∞
and

(3,±6), (10,±120)

in X(Q).

We’ve found 10 points!

Hence we have provably determined

X(Q) = {(0, 0), (1, 0), (2, 0), (5, 0), (6, 0), (3,±6), (10,±120),∞}.
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Chabauty-Coleman

What is different in this second example? What allows us to
compute X(Q)?

(A bit of luck + ) satisfying an inequality between the genus of
the curve X and the rank of the Mordell-Weil group of its
Jacobian J(Q) (+ work of Chabauty and Coleman).
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Chabauty’s theorem

Theorem (Chabauty, ’41)
Let X be a curve of genus g > 2 over Q. Suppose the Mordell-Weil
rank r of J(Q) is less than g. Then X(Q) is finite.

To make Chabauty’s theorem effective:
I Need to find a way to bound X(Qp) ∩ J(Q)

I Do this by constructing functions (p-adic integrals of
1-forms) on J(Qp) that vanish on J(Q) and restrict them to
X(Qp)

This was done by Coleman (1985).
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The method of Chabauty-Coleman
Assume X(Q) , ∅ and fix a basepoint b ∈ X(Q).
I ι : X ↪→ J, sending P 7→ [(P) − (b)]
I p > 2: prime of good reduction for X

Recall that the map H0(JQp ,Ω1) −→ H0(XQp ,Ω1) induced by ι is
an isomorphism of Qp-vector spaces. SupposeωJ restricts toω.
Then for Q, Q ′ ∈ X(Qp), define∫Q ′

Q
ω :=

∫ [Q ′−Q]

0
ωJ.

If r < g, there existsω ∈ H0(XQp ,Ω1) such that∫P

b
ω = 0

for all P ∈ X(Q). Thus by studying the zeros of
∫
ω, we can find

a finite set of p-adic points containing the rational points of X.
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Computing rational points via Chabauty Coleman

We have

X(Q) ⊂ X(Qp)1 :=

{
z ∈ X(Qp) :

∫ z

b
ω = 0,

}
for a p-adic line integral

∫∗
b ω, withω ∈ H0(XQp ,Ω1).

We would like to compute an annihilating differentialω and
then calculate the finite set of p-adic points X(Qp)1 .
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Example: Chabauty-Coleman with g = 2, r = 1
Suppose we have a genus 2 curve X/Q with rk J(Q) = 1 and
X(Q) , ∅. Fix a basepoint b ∈ X(Q).
I We know H0(XQp ,Ω1) = 〈ω0,ω1〉.
I Since r = 1 < 2 = g, we can compute X(Qp)1 as the zero set

of a p-adic integral.
I If we know one more point P ∈ X(Q), we can compute the

constants A, B ∈ Qp:∫P

b
ω0 = A,

∫P

b
ω1 = B,

then solve the equation

f (z) :=
∫ z

b
(Bω0 − Aω1) = 0

for z ∈ X(Qp).
I The set of such z is finite, and X(Q) is contained in this set.
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From zeta functions to Coleman integrals
During the summer school last week, we learned various things
about zeta functions and L-functions

I One fast way of computing zeta functions of hyperelliptic
curves over finite fields is Kedlaya’s algorithm.

I Kedlaya’s algorithm can be recast into an algorithm for
computing Coleman integrals.

I Having an algorithm for Coleman integrals can help us
compute rational points on hyperelliptic curves.

So I will first discuss how to compute Coleman integrals on
hyperelliptic curves* and then discuss how to extend this to
general curves.

*For the experts: there are other interesting zeta function algorithms using p-adic techniques. It’d be interesting to
turn some of these zeta function algorithms into Coleman integration algorithms!
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p-adic line integrals
Coleman integrals are p-adic line integrals.

P
P’

Q’
“Tiny” integral?

p-adic line integration is difficult – how do we construct the
correct path?
I We can construct local (“tiny”) integrals easily, but

extending them to the entire space is challenging.
I Coleman’s solution: analytic continuation along Frobenius,

giving rise to a theory of p-adic line integration satisfying
the usual nice properties
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Notation and setup

I X: genus g hyperelliptic curve (of the form y2 = f (x), f
monic of degree 2g + 1) over K = Qp

I p: prime of good reduction
I X: special fibre of X
I Xan

Cp
: generic fibre of X (as a rigid analytic space)
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Notation and setup, in pictures
I There is a natural reduction map

from Xan
Cp

to X; the inverse image

of any point of X is a subspace of
Xan

Cp
isomorphic to an open unit

disk. We call such a disk a residue
disk of X.

I A wide open subspace of Xan
Cp

is the
complement in Xan

Cp
of the union

of a finite collection of disjoint
closed disks of radius λi < 1:

1
λ2

λ1

1

Xan

Cp

red

red (P)-1

        X

P

S

R

red (S)-1

red (R)-1
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Warm-up: Computing “tiny” integrals
We refer to any Coleman integral of the form

∫Q
P ω in which

P, Q lie in the same residue disk (so P ≡ Q (mod p)) as a tiny
integral. To compute such an integral:
I Construct a linear interpolation from P to Q. For instance,

in a non-Weierstrass residue disk, we may take

x(t) = (1 − t)x(P) + tx(Q)

y(t) =
√

f (x(t)),

where y(t) is expanded as a formal power series in t.
I Formally integrate the power series in t:

∫Q

P
ω =

∫ 1

0
ω(x(t), y(t)) dt.

P
Q
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Properties of the Coleman integral
Coleman formulated an integration theory on wide open
subspaces of curves over O.
This allows us to define

∫Q
P ωwheneverω is a meromorphic

1-form on X, and P, Q ∈ X(Qp) are points whereω is
holomorphic.
Properties of the Coleman integral include:

Theorem (Coleman)

I Linearity:
∫Q

P (αω1 + βω2) = α
∫Q

P ω1 + β
∫Q

P ω2.

I Additivity:
∫R

P ω =
∫Q

P ω+
∫R

Qω.
I Change of variables: if X ′ is another such curve, and f : U→ U ′

is a rigid analytic map between wide opens, then∫Q
P f ∗ω =

∫f(Q)
f(P) ω.

I Fundamental theorem of calculus:
∫Q

P df = f (Q) − f (P).
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Coleman’s construction

How do we integrate if P, Q aren’t in the same residue disk?
Coleman’s key idea: use Frobenius to move between different
residue disks (Dwork’s “analytic continuation along
Frobenius”)

P
P’

Q
Q’

“Tiny” integral

Frobenius

So we need to calculate the action of Frobenius on differentials.

Jennifer Balakrishnan, Boston University Explicit Coleman integration for curves 15



Frobenius, MW-cohomology
I X ′: affine curve (X − {Weierstrass points of X })
I A: coordinate ring of X ′

To discuss the differentials we will be integrating, we recall:
The Monsky-Washnitzer (MW) weak completion of A is the ring A†

consisting of infinite sums of the form{ ∞∑
i=−∞

Bi(x)
yi , Bi(x) ∈ K[x], deg Bi 6 2g

}
,

further subject to the condition that vp(Bi(x)) grows faster than
a linear function of i as i→ ±∞. We make a ring out of these
using the relation y2 = f (x).
These functions are holomorphic on wide opens, so we will
integrate 1-forms

ω = g(x, y)
dx
2y

, g(x, y) ∈ A†.
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Using the basis differentials

Any odd differentialω = h(x, y) dx
2y , h(x, y) ∈ A† can be written as

ω = dfω + c0ω0 + · · ·+ c2g−1ω2g−1,

where fω ∈ A†, ci ∈ Qp and

ωi =
xi dx
2y

(i = 0, . . . , 2g − 1).

The set {ωi}
2g−1
i=0 forms a basis of the odd part of the de Rham

cohomology of A†.

By linearity and the fundamental theorem of calculus, we
reduce the integration ofω to the integration of theωi.

Jennifer Balakrishnan, Boston University Explicit Coleman integration for curves 17



Some notation and setup

Let φ denote a lift of p-power Frobenius:
I On a hyperelliptic curve y2 = f (x),

φ : (x, y) 7→ (xp,
√

f (xp)).

I A Teichmüller point of X is a point P fixed by Frobenius:
φ(P) = P.

Jennifer Balakrishnan, Boston University Explicit Coleman integration for curves 18



Integrals between points in different residue disks

One way to compute Coleman integrals
∫Q

P ωi:
I Find the Teichmüller points P ′, Q ′ in the residue disks of

P, Q.

I Use Frobenius to compute
∫Q ′

P ′ ωi.
I Use additivity in endpoints to recover the integral:∫Q

P ωi =
∫P ′

P ωi +
∫Q ′

P ′ ωi +
∫Q

Q ′ ωi.
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The Frobenius step (Kedlaya’s algorithm)
We have a p-power lift of Frobenius φ on A†:

φ(x) = xp,

φ(y) =
√

f (xp) = yp
(

1 +
f (xp) − f (x)p

f (x)p

)1/2

= yp
∞∑

i=0

(
1/2

i

)
(f (xp) − f (x)p)i

y2pi .

Now we use it on H1
MW(X ′)−; letωi =

xidx
2y .

φ∗ (ωi) = φ
∗
(

xidx
2y

)
Then

φ∗ (ωi) = dfi +
2g−1∑
j=0

Mijωj

for some fi ∈ A† and some 2g× 2g matrix M.

*p-adic magic: the dfi come from appropriate linear
combinations of d(xkyj) and d(y2 = f (x)).
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Frobenius and Coleman integrals
(B.-Bradshaw-Kedlaya (’10))

I Use Kedlaya’s algorithm to calculate the action of
Frobenius φ on each basis differential, letting

φ∗ωi = dfi +
2g−1∑
j=0

Mijωj.

I Compute
∫Q ′

P ′ ωj by solving a linear system
I As the eigenvalues of the matrix M are algebraic integers of

C-norm p1/2 , 1 , the matrix M − I is invertible, and we
may solve the system to obtain the integrals

∫Q ′
P ′ ωi.
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Integrals via Teichmüller, continued

I The linear system gives us the integral between different
residue disks.

I Then putting it all together, we have

∫Q

P
ωi =

∫P ′

P
ωi +

∫Q ′

P ′
ωi +

∫Q

Q ′
ωi

P Q
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Integrating from a Weierstrass residue disk

Suppose we want to integrate from P = (a, 0), a Weierstrass
point on X.
I In the previous algorithm, one step is evaluation of fi on

the endpoints of integration.
I But fi, as an element of

A† =
{∑∞

i=−∞ Bi(x)
yi , Bi(x) ∈ K[x], deg Bi 6 2g

}
need not

converge at P.
I However, fi does converge at any point R near the

boundary of the disk, i.e., in the complement of a certain
smaller disk which can be bounded explicitly.

I We break up the path as
∫Q

P ωi =
∫R

P ωi +
∫Q

R ωi for a
suitable “near-boundary point” R in the disk of P: that is,
we evaluate

∫Q
R ω using Frobenius, then compute

∫R
P ω as a

tiny integral.
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Beyond hyperelliptic curves
Jan Tuitman gave practical algorithms (2014, 2015) to compute
zeta functions for general curves...

[joint work with Jan Tuitman]
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Dictionary: from Kedlaya to Tuitman
A comparison of the two zeta function algorithms:

algorithm Kedlaya Tuitman
curve X/Q hyperelliptic general

cohomology Monsky-Washnitzer rigid
basis of H1(X) ωi =

xidx
2y ωi = it’s complicated*

Frobenius lift φ φ : x→ xp

reduction in H1(X) linear algebra reducing pole order**
output φ∗ωi = dfi +

∑2g−1
j=0 Mijωj

*Main idea: use a map x : X→ P1 to represent functions and
1-forms on X and then choose a particularly simple Frobenius
lift that sends x→ xp

**In Tuitman’s algorithm, the goal is the same, but it’s worth noting that the linear algebra uses ideas from Lauder’s
fibration method.
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Tuitman’s algorithm: setup
I X/Q: nonsingular projective curve given by a (possibly

singular) plane model Q(x, y) = 0 with Q(x, y) ∈ Z[x, y]
irreducible and monic in y

I dx, dy: degrees of Q in y, x
I p prime of good* reduction for X
I ∆(x) ∈ Z[x] the discriminant of Q(x, y) with respect to y
I r(x) ∈ Z[x] squarefree with the same roots as ∆(x)

Note that r(x) = 0 gives us a collection of “bad” points: if
r(x0) = 0, then one of the following holds:
I the plane model Q(x, y) = 0 has a singularity lying over x0
I the map x : X→ P1 has a ramification point lying over x0

*...and further technical reduction conditions on points in the support of r(x) and matrices W0 , W∞ (next slide)
giving integral bases for Q(X) over Q[x] and over Q[1/x]
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Tuitman’s algorithm: integral bases

Let Q(X) denote the function field of X.

Definition
We let W0 ∈ GLdy(Q[x, 1/r]) denote a matrix such that if

b0
j =

dy−1∑
i=0

W0
i+1,j+1yi,

then {b0
0, . . . , b0

dy−1} is an integral basis for Q(X) over Q[x].
Similarly we let W∞ ∈ GLdy(Q[x, 1/x, 1/r]) denote a matrix such
that {b∞0 , . . . , b∞dy−1} is an integral basis for Q(X) over Q[1/x].

Example
When the plane model Q(x, y) = 0 is smooth, we can take
W0 = I since {y0, . . . , ydy−1} is already an integral basis.
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Tuitman’s algorithm: overconvergent rings

Let:
I V be the Zariski open of P1

Zp
defined by the two conditions

x ,∞ and r(x) , 0
I U = x−1(V) the Zariski open of X lying over V.

We take

S† = Qp〈x, 1/r〉†, R† = Qp〈x, 1/r, y〉†/(Q),

where 〈〉† denotes weak completion, i.e.,

Qp〈x1, . . . , xm〉† = {
∑

I

cIx
i1
1 · · · x

im
m : radius of convergence > 1}
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Tuitman’s algorithm: Frobenius

We lift p-power Frobenius φ to S† = Qp〈x, 1/r〉† and
R† = Qp〈x, 1/r, y〉†/(Q) in the following way:
I Let φ(x) = xp

I Compute φ(1/r) ∈ S† Hensel lifting φ(1/r) = 1/r(xp),
starting from 1/rp

I Compute φ(y) ∈ R† Hensel lifting Q(xp,φ(y)) = 0, starting
from yp

We compute the action of Frobenius on a basis of differentials
and reduce in cohomology using linear algebra, writing
everything with respect to integral bases {b0

i } and {b∞i }.

We computes H1(X) ⊂ H1(U) as the kernel of a residue map.
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Matrix of Frobenius and Coleman integration
As before, by applying φ and reducing within cohomology, we
can find a matrix M and functions f0, . . . , f2g−1 ∈ R† such that

φ∗(ωi) = dfi +
∑

j

Mijωj

for i = 0, . . . , 2g − 1, where M is the matrix of Frobenius on
H1(X) wrt the basis {ω0, . . . ,ω2g−1}

To compute Coleman integrals
∫Q

P ωj we solve the linear system
via Teichmüller points P ′, Q ′∫Q ′

P ′
ωi = fi(Q ′) − fi(P ′) +

2g−1∑
j=0

Mij

∫Q ′

P ′
ωj

and correct endpoints.

In joint work with Jan Tuitman, we have an algorithm that does
this, along with precision bounds, and a Magma
implementation.
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Example: computing rational points Xsplit(13)

The “cursed” modular curve X = Xsplit(13) is a smooth plane
quartic with genus 3 and rank 3, given by

Q(x, y) = y4 + 5x4 − 6x2y2 + 6x3 + 26x2y

+ 10xy2 − 10y3 − 32x2 − 40xy + 24y2 + 32x − 16y

By computing various types of Coleman integrals on X and
carrying out explicit nonabelian Chabauty on this curve, we
can prove that it has no rational points apart from previously
known ones.

Theorem (B., Dogra, Müller, Tuitman, Vonk)
We have |Xsplit(13)(Q)| = 7.
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Future work: what else can Coleman integrals do?

I Chabauty-Coleman method for finding rational points on
curves (with small rank)

I Kim’s nonabelian Chabauty method: extend this to higher
rank by considering iterated Coleman integrals

I Local p-adic heights on curves: hp(D1, D2) =
∫

D2
ωD1 , part

of a global p-adic height
I p-adic regulators
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